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A third-order nonlinear problem, which under certain circumstances approximates the flow 
in a l-dimensional fluidized bed, is solved numerically. A PetrovCralerkin finite element 
method, with piecewise linear trial functions and cubic spline test functions, is used for the dis- 
cretization in space. If product approximation is applied to the numerical representation of 
the nonlinear terms, then the scheme is fourth-order in space in the finite difference sense. 
Second-order backward differentiation is used for the time stepping. It is found that, while cer- 
tain values of the time step may produce stable results, a reduction in the time step introduces 
instability. This is confirmed by a von Neumann stability analysis of a simplified case and is 
also shown to be reasonable in view of the continuous problem which contains stable and 
unstable modes. A set of numerical experiments is presented. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

The system of partial differential equations 

a, + (au), = 0 

au+(l-a)o=j 

a( 1 - tL) p(u, + 244,) = B(a)(u - U) - (1 - cr)(r$(a)), 

-a(l-a)g~+2~(1--ol)(au,), 

(la) 

(lb) 

(lc) 

approximates the l-dimensional vertical flow in a fluidized bed where x is the verti- 
cal coordinate and r is time. The function a(x, t) is the concentration of the particles 
by volume. The velocities of the particle and fluid phases are denoted by u and u, 
while j and p are constants representing the volumetric flux, and the viscosity of the 
particle phase, respectively. The function 

B(a)=a(l-a)*-“K 

is the coefficient of friction between the two phases, where K= 9p,/2R2, pg is the 
viscosity of the gas, and R is the radius of the particles. For our purposes, a more 
convenient form is K=gpJv,, where v, is the terminal velocity of an isolated 

300 
0021-9991/89 $3.00 
Copyright 0 1989 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



NONLINEAR WAVES IN A FLUIDIZED BED 301 

particle. The particle density is p and g is the acceleration due to gravity. Typical 
values for n are about 3 or 4. Little is known about the function c@(a) which is 
related to the particle pressure and plays an important role in the study of stability 
of (1). We assume that the derivative of this function with respect to 1 - LY is a 
linear function -G(a) > 0. The system above is a typical model of dispersed 
two-phase flow, see for example Needham and Merkin [lo], Drew [2], and 
Homsy, El-Kaissy, and Didwania [S]. 

Under certain restrictions, such as the long wavelength and small amplitude 
approximations, the equation (Ganser and Drew [S], Liu [7]) 

a, - 2Naacr, + R;’ axxx + co- v[co+ a,, + Zo+ u(aa,), + a,] = 0 (2) 

can be regarded as an approximation to the system (l), where aa now denotes the 
value perturbed from the equilibrium state ao. The coefficients are given as 

BO = Wao) 

GO = G(ao) 

R;’ = (L,/L)’ 

v = LJL 
(3) 

1 
co+ = -a,n f 

o,(l +a,)“-’ pmP. 

Here, L, and L, are physical lengths, determined by the parameters in the problem, 
and L is the length scale related to the perturbations in the particle concentration. 
In addition, the term Zo+ aa is related to the nonlinear correction to the speed of 
sound in the particle phase and -2Nua is the nonlinear correction to the speed of 
the continuity wave. In terms of the notation introduced in (1) these terms are 
determined by the formulas 

zo+ =n+ Gl 
2v,( 1 - ao)*-l Jq 

and 

-2N= 
H;I 

v,(l -a,)“-’ ’ 

where H(a) = -a2( 1 - a)2pg/B(a) and prime denotes differentiation with respect 
to a. 

We are interested in studying numerically the nonlinear stability of (2). First, in 
Section 2, we discuss the mathematical background of the problem. This includes 
the linear stability of (2) and a brief description of the nonlinear analysis given by 
Ganser and Drew [3,4]. The understanding of the problem provided in Section 2 
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302 CHRISTIE AND GANSER 

is central to the development of the numerical techniques required to solve (2) and 
to interpret the numerical results. It will be shown that, in some cases, periodic 
initial conditions with sufficiently long wavelengths, which are linearly unstable, are 
nonlinearly stable with respect to certain perturbations. 

In Section 3, stable and accurate numerical methods are developed for the 
approximation of (2) together with periodic initial data. It is found that reductions 
in the time step may introduce instabilities unless the spatial grid size is sufficiently 
small. A similar phenomenon, also arising in a two-phase flow problem, is discussed 
in Lyczkowski, Gidaspow, Solbrig, and Hughes [8] and is attributed to the 
presence of complex characteristics, which is not the case here. Equation (2) thus 
provides a stringent test for a numerical algorithm; physical and numerical 
instabilities must be correctly distinguished. Finally, in Section 4, the results of our 
numerical experiments are given. 

2. MATHEMATICAL BACKGROUND 

The standard method for studying the linear stability of (2), with a = 0, is to look 
for solutions of the form 

a@, t) N (p-fir)* (4) 

Substitution of this into (2), with a =O, leads to an equation for the wave 
frequency, 

- R;‘k3 + v2co+ c;- k3 + ivc,- k2(co+ + R;’ k*) 
P= 1 + v’& k2 (5) 

A stable solution exists provided Im p < 0. Since R;’ > 0 and cO- < 0, it is clear 
that all waves of the form given by (4) are stable (amplitudes decay to zero) if 
cO+ > 0. The sign of cO+ depends on aO, the equilibrium value of the particle con- 
centration. Examination of the definition for c 0+ given in (3), yields the regions of 
stability shown in Fig. 1. All wavelengths decay to zero for a,, > a; (stable states), 
only the larger wavelengths (small wave numbers) grow for unstable a0 states. This 
is seen in Fig. 2 where Im /J is plotted as a function of wavelength. Note that, since 
we have scaled length with L, it is equivalent to set k = 1 and let l/L be the wave 
number. The neutrally stable wavelength is given by 

where the subscript 0 denotes that L has been replaced by Lo in the definition of 
RF ’ . Since we want to include L,, in the long wave approximations which gave rise 
to (2), it is necessary that IcO+ 1 4 1. This restricts our study of unstable a0 states 
to those sufficiently close to at; (see Fig. 1). 

It is clear that, within linear theory, an initial condition of the form e’” will grow 
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FIG. 1. Regions of stability and instability of q, states. 
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FIG. 2. Im p plotted as a function of wave number l/L. 
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in amplitude indefinitely if L > L,. If we are to continue to study the implications 
of the original mathematical model it is necessary to include nonlinear effects 
(a # 0). 

For L close to L,, and small amplitudes, the primary balance in (2) is 

c(,+R~~~,,,~O (7) 

suggesting that time be resealed by I= R;’ 1. Equation (2) then becomes 

a; + fl(a2), + a,,, + ; (a*),, + &CL,, - 6crj, = 0, 

where 

&= Leo+ co- 
LR;’ 

y= 
L, a to+ co- 

LR;’ 

6 = -L, co-/L. 

(8) 

(9) 

Ganser and Drew [4] show that, for L close to Lo, an initial condition of the form 
a(x, 0) = cos x evolves to 

3mc0, aa = 4~ cos[x + I( 1 + O(m’)) - 0,] + o(m), (loa) 

where 

9m2 2 co+ 
r’=(L/Lo)2=1-~ j+y . 

( -> 
(lob) 

From (lob) it is seen that the restriction L close to Lo implies that m is small. 
Equations (lo), therefore, imply that for a sufficiently small resulting m, an initial 
sinusoidal wave with wavelength L > Lo (and thus linearly unstable) will evolve to 
a travelling wave with amplitude 3mco+ /4N if ( -Eo+ /N) > 3, where m is deter- 
mined from (lob) for the given L. If ( -Z,+ /N) < $, the wave will continue to grow 
and, therefore, the a0 state is nonlinearly unstable. On the other hand, if 
(-.5,+/N) < f initial waves with L <Lo will decay to zero if the initial amplitude 
is smaller than the critical amplitude given by (lob) and grow if it is larger. The 
solid curves in Fig. 3 show these different cases. 

A way to extend this result for L not necessarily close to Lo is to note that the 
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1 

FIG. 3. Three representative cases for periodic solutions: (a) (-E,,+ /N) < f; (b) f < (-&+/N) < a; 
(cl (--E,+/W>i. 

equilibrated solution given in (10a) is a simple travelling wave. We, therefore, look 
for periodic solutions of (8) of the form LX(() = a(x - fi). This gives 

0 = -Va, + j?(a2), + acic + s (a2)cr + eaIc + VGali. (11) 

Since the periodic initial conditions used to arrive at (10) also had an average value 
of zero over one period, we require further that solutions of (11) satisfy 

I 
2s 

a dc = 0. 
0 

(12) 

In Ganser and Drew [3], periodic solutions of (11) subject to (12) are found using 
perturbation techniques. These solutions are 

- 3mco+ 
( 

(m-l)K+E 
“= 2Nf(m) mK --n2 (tK-40);m)) 

r2 = (L/I~,)~ = $f (m), 

Wa) 

(13b) 

where [ =x - (4K2/7r2) (2 -m - 3E/K) 1. The terms K(m) and E(m) are the com- 
plete elliptic integrals of the first and second kind, respectively, and are functions 
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of the parameter m (0 d m d 1). The function f(m) also involves elliptical functions, 
as well as parameters from the differential equation. 

The important point is that for m + 0, (13) reduces to (10) and, therefore, is an 
extension of the previous work. These additional results are shown in Fig. 3 as the 
dotted lines. Note that for case (c) (-c”,, /N > 2) as L + co, m + 1 and the solution 
(13a) approaches a solitary wave. 

This concludes the description of the mathematical results pertinent to the 
numerical work undertaken in the next two sections. For a complete discussion of 
the theory, see Ganser and Drew [3,4]. 

3.1. Discretization in Space and Time 

We wish to approximate solutions of (8) (tilde dropped for simplicity) 

L(a) = a, + B(a*), + a,, + 4 (a*),, + &a,, - da,, = 0, VW 

where (x, t)E [0,27r] x [0, co), constants /?, y, E are defined by (9), subject to the 
initial data 

46 0) =f(x) o<x<2lr (14b) 
and boundary conditions 

a(0, 1) = a(271, t), aJO, t) = a,@, t), 

a,(O, t) = a,,Ch t), t > 0. (l&l 

Since we restricted ourselves to periodic initial data in Section 2, it is sufficient to 
consider the initial/boundary value problem (14). 

To discretize (14a) in space, a PetrovGalerkin finite element method is used. 
Multiply through by V(X), a twice differentiable function, and integrate by parts 
twice to obtain 

(aI, u) + B((a*L u) + ( a,, u,J -I ((a*),, 0,) -da,, 0,) 

- 6th u) = 0, (15) 
where ( , ) denotes the usual L, inner product 

CL g) = ~;h g(x) dx. 

Introduce a grid 0 = x0 < x1 < . . . -C xp = 2a in space with uniform spacing h = 2x1~ 
and approximate the exact solution by 

a@, t) N i Ai #Ax). 
i=O 

(16) 

The presence of only first space derivatives in (15) means that the basis functions 
ii(x) can be chosen to be the usual Ce linear hat functions having a support of 2h. 
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The unknown functions Ai( t) are obtained by solving the system of ordinary 
differential equations in t, given by 

(At, +j) + 8(fA2)x, tij) + tA.x, ($j)x.x)-~ ((A2)xY ($j)x) 

-E(Ax9 (+j/i)x)-6(AtxP +j)=O9 (17) 

j=O, 1 , . . ..p for suitable test functions tij(x) and initial data from (14b). The 
function Ai = A(xi, t) approximates a(xi, t). Rather than compute (17) in the 
standard fashion, we make use of the product approximation (Christie, Griffrths, 
Mitchell, and Sanz-Serna [ 1 ] ) 

a2b, t) N 5 A:(t) 4itx) (18) 
i=O 

to handle the two nonlinear terms. 
The test functions Jli(x) are selected to be the C2 Schoenberg cubic splines having 

a four element support and given by 

-4(i-j-l):f(X--j--Z):] (19) 

where j-2<x/h<j+2 and 

(x), = {; ;;;z(y 
. . 

This procedure was used successfully by Sanz-Serna and Christie [ 1 l] to solve the 
KdV equation. 

Substitution of (16), (18), and (19) into (17) yields the following autonomous 
system of ordinary differential equations (. E &It) 

(20) 
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j= 1, 2, . . . . p with Aj= A(xj, t). Th e initial conditions are provided by (14b) and end 
values are found by imposing periodicity. 

Taylor series expansions of (20) produce 

which, upon using (14a), shows that (20) is fourth-order accurate in space when 
regarded as a finite difference scheme. The use of a piecewise linear interpolant to 
derive (20) clearly indicates that it is not fourth order over the entire spatial 
domain. However, this result is interesting since the usual Galerkin approach, 
without product approximation (18), leads only to second-order accuracy in space 
when it too is regarded as a finite difference scheme. The improvement in accuracy 
of product approximation over the standard Galerkin approach was noticed by 
Sanz-Sema and Christie [ 111 for the KdV equation. Equation (14a) reduces to the 
KdV equation when y = E = 6 = 0. Clearly, the replacement of the a2 terms in (14a) 
by more general nonlinear functions will not reduce the fourth-order accuracy 
obtained by product approximation. An additional feature is that the system (20) 
is simpler than that produced by the standard Galerkin method and, therefore, it 
is less expensive computationally. 

We write (20) in the form 

MA = KA + g(A) = F(A), (21) 

where AT = (A,, A,, . . . . A,), M and K are constant p xp matrices found in an 
obvious manner from (20) and g(A) contains the nonlinear terms in (20). The 
integration of (21) presented some difficulty. Our first attempt was to use the 
trapezoidal rule which gives second accuracy in time. However, instability was often 
present and we discarded the method. We turned next to the backwards Euler 
method which is only first-order accurate in time but is known to have better 
stability properties than the trapezoidal rule (see Lambert [6], for example). 
Although this led to an improvement, instability still remained for sufficiently small 
time steps. This unusual behaviour is discussed in Section 3.2. The low order of the 
backwards Euler proved to be inadequate so instead we implemented a second- 
order backwards differentiation formula (Lambert [6, p. 2421). This takes the form 

3A”+‘-4A”+‘+A” 
2At > 

= F(A”+2), (22) 

where n = 0, 1, . . . denotes the time level, At is the uniform time step and 
A; = A(xj, ndt). This 3-level scheme requires a second-order estimate for A, and 
this was provided by the trapezoidal rule which did not exhibit instability until later 
time levels. 

The system (22) is solved iteratively by Newton’s method with the solution at the 
previous time level providing the starting estimate. Iteration continues until the 
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maximum norm of the difference between two successive iterates is less than a 
prescribed tolerance. The Jacobian is a 5-band matrix with three elements in the 
top right and bottom left corners coming from the periodicity conditions. Updating 
is required at each iteration and the linear system is solved by Gaussian elimination 
with the matrix being stored in nine vectors. 

An alternative iteration of (22) was also considered where the linear and 
nonlinear terms of F(A), as shown in (21), are separated to give 

($f-K)A”+2=M(~(4A”+1-A”))+g(A”+2). (23) 

The left-hand matrix is then constant, has the structure of the Jacobian described 
above, and can be factored once at the beginning, the pivots being stored for later 
use. The scheme (23) can be solved via a predictor-corrector approach. Unfor- 
tunately, this technique required a significantly larger number of iterations at each 
time step than Newton’s method and it was decided, therefore, to use Newton’s 
method throughout. 

The time step At was held constant in each of our calculations. One reason for 
avoiding a variable time stepping procedure is that whenever At is reduced with h 
remaining fixed, instability often appears. This peculiar behaviour is now examined. 

3.2. Stability 
When solving systems of the type (21), it was found that satisfactory answers 

could be obtained for certain choices of At and h. On reducing At and keeping h 
fixed, however, instabilities appeared. This behaviour would usually be associated 
with an unstable numerical method. Numerical experiments demonstrated the 
phenomenon with several numerical schemes based on both Galerkin and finite dif- 
ference approaches and a variety of time stepping techniques including backward 
differentiation formulas. We conjectured that a positive lower bound stability 
restriction on At/h* must be present. 

As an illustration of the stability properties we consider the linear equation 

a, + a, + &a, - da,, = 0, (24) 

where E and 6 are positive constants. Discretize in space by Galerkin’s method with 
piecewise linear trial and test functions except for a, which is given its usual 
5-point replacement. Discretize in time by the backwards Euler method to give 

+~(A:ClI-2A~+‘+~~~,:)=0, (25) 
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where m= 1,2, . . . . p and n=O, 1, . . . . This discretization is different from that 
described earlier and used to produce the numerical results which appear later. 
However, its stability analysis is simpler and it serves as a useful illustration of an 
instability phenomenon which was observed in a large number of numerical 
methods. 

We apply the von Neumann stability test (see Mitchell and Griffiths [9]) to (25) 
by substituting the general Fourier component 

where k is the wave number and i = J- 1. For stability, we require that either 
(I 51’ - 1)/d? is negative or, if positive, that it be bounded by a constant A4, 
independent of At and h. Now 

12( 1 - cos Q)[&h2(2 + cos Q) - 36 sin2Q 
1512- 1 - 3E2rh2( 1 - cos Q) - 3r sin’ Q( 1 - cos Q)] 1 -= 

At h4[2 + cos Q + 6er(cos Q - 1)12 + 9h2 sin2Q[2r(cos Q - 1) - &I2 ’ (26) 

where r = At/h2 and Q = kh. First we consider Q = K: 

1[12--l-24s[l-6&r] 
At h2[ 1 - 12&r]’ ’ 

It follows that, unless r 2 l/(6&), (I (1 2 - 1 )/At is unbounded as h + 0. Hence, it is 
necessary that 

for stability. 

r > 116s (27) 

We can show that (27) is also sufficient for stability. Denote the numerator of 
(26) by 12(v - w), where 

u(Q) = (1 - cos Q)[&h2(2 + cos Q) - 36 sin2 Q] 

w(Q) = 3r(l --OS Q)2[.z2h2 + sin2Q]. 
(28) 

Analysis of u(Q) for h < 1 reveals two regions in [0,2n], where u is non-negative; 
[0, h @] and [n - tl, A + a], where 0 < CI < n/2. On the other hand, -w(Q) is 
negative on (0,2a) and zero at Q = 0, 2x. Between n/2 and 3n/2 the largest value 
of - w is - 12r.s’ taken only at Q = ‘IZ. Hence, by examining U(X) - w(n) we see that, 
if (27) is satisfied, o - w is negative except possibly on [0, h ,/$I. Expansion of 
u(Q) - w(Q) for Q @ 1 yields 

u(Q)-w(Q)=? C3.5 - 36Q2/h2 + O(Q2, Q”/h’, rQ2, rQ4/h2)]. (29) 
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This will remain positive for At and h sufficiently small. This must be the case for 
a consistent numerical algorithm since the above expression with Q < 1 (or h 4 1, 
k fixed) corresponds to the continuous problem where small wave numbers are 
unstable (see Eq. (5)). Expanding the denominator of (26) for Q small shows that 
I<\* < 1 + M At, where A4 is a constant independent of At and h. The stability 
requirement is now satisfied for all Q when At and h are sufficiently small and 
satisfy (27). 

4. NUMERICAL RESULTS 

The results presented here are based on the parameter values N= 0.05, 
Li = 10P5’*, L,=O.OOl, cO+ = -0.0025, co- = -4, Zo+ = -1 and, in light of (13a), 
we normalize the size of the perturbation by choosing a = co+ co-. This choice 
ensures that we are considering the case (c) shown in Fig. 3. We are particularly 
interested in whether given initial data (14b) for Eq. (14a) will, for a given I 
(defined by (lob)) evolve into travelling wave solutions corresponding to solutions 
of the ordinary differential equation (11). The problem (1 1 ), (12), and periodic 
boundary data was solved numerically by a second-order finite difference method 
on a uniform mesh of width h = 27r/lOO. The integral term (12) was approximated 
by the trapezoidal rule and the resulting system of algebraic equations was solved 
by Newton’s method. Continuation was used to advance the solution from r = 1.01 
to r = 20. In Fig. 4, graphs of r = 1.01, 1.5, 5, and 20 demonstrate that, as r 
increases, the solution changes from a basic sine wave into a solitary wave. Note 

-1.5 I I I I I I I- 5 
8 1 a 3 4 5 6 7 

FIG. 4. Solutions of (11) with various r showing the development ‘of a solitary wave. 
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TABLE I 

r Maximum Minimum 

1.01 0.311 -0.318 
1.5 1.041 - 1.233 
2 0.876 -1.139 
5 0.338 -0.706 

10 0.147 -0.565 
15 0.09 1 -0.527 
20 0.066 -0.511 

that the solutions in Fig. 4 agree with the theoretical results (10) and (13). For 
example, at r = 1.01 the predicted amplitude from (10) is 0.322, whereas the numeri- 
cal solution gives -0.318 <LX GO.311. The minimum value of the solution occurs 
close to r = 1.5. Some of the maximum and minimum values of the solution at 
different r values are given in Table I. A graph of the minimum values against r is 
shown in Fig. 5. 

Turning now to the partial differential equation, problem (14), we choose 
f(x) = 0.1 sin x to represent a small initial disturbance. The method of solution is 
(22) which is second order in time and fourth order in space. This scheme is 
iterated by Newton’s method and, typically, between two and four iterations are 
required for lo-decimal place accuracy. The Newton iteration is started by taking 
the initial estimate to be the solution computed at the previous time level. 

First we run the case r = 1.5 for which the coefficients in (14a) given by (9) are 
approximately /I = -0.45, y =0.37947, 6 = 0.04216, and E =0.09487. With the 
number of elements p = 200 and the time step At = 0.01 a minimum of - 1.230 is 
obtained at t = 100. In Fig. 6 the evolution of the solution is shown for t = 20, 40, 

e 5 10 15 ee 

FIG. 5. Plot of minimum values of a (u&, computed from (1 l), for 1.01 Q r < 20. 



NONLINEAR WAVES IN A FLUIDIZED BED 313 

1 a 3 4 5 6 7 

FIG. 6. Solution of (14) with r= 1.5 at various time levels, shifted to show zero end values. 

60, and 100. By t = 100 the fully developed travelling wave solution has been 
obtained. In order to compare amplitudes at different time levels, since the wave is 
moving, we have shifted each solution so that a(0) = a(2n) = 0. If we now set 
At =O.OOl then instability occurs which can be overcome by an appropriate 
increase in p, as is discussed in Section 3.2. 

Several other cases with different values of r also are computed. For r close to 
one, the growth rate of the solution into a travelling wave is slow and hundreds of 
thousands of time steps are required. We performed experiments with r as small as 
1.01 and again found agreement with the solution of (11). For r < 1 the solution 
was found to decay to zero, as predicted by the theory in Section 2. For 
1.0 < r < 2.4 the behaviour of the solution is much the same as the r = 1.5 case. At 
r = 2.5, however, an interesting phenomenon occurs. Rather than evolving to the 
travelling wave solution with period 271, the solution evolves to a travelling wave 
with period rr and is shown in Fig. 7. This solution with p = 200 and At = 0.01 is 
fully developed by t = 120 and was verified numerically to be a solution of (11). A 
simple change of variable shows that this solution with period rr for r = 2.5 is identi- 
cal to the solution of (11) with period 271 for r = 1.25. Near linear theory (see 
Ganser and Drew [4]) suggests that the first harmonic which is generated by the 
nonlinearities and is dispersing at a different speed than the fundamental period, 
begins to dominate at r = 2.5. We note that for r < 2 the first harmonic decays to 
zero for sufficiently small amplitudes (as is the case here) and only begins to grow 
for r > 2. Evidently the first harmonic only begins to dominate at r = 2.5. 

Continuing to increase, r shows that the first harmonic dominates and the initial 
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a 

-1.0- 

-1.5-, I I I I 1 I r x 

6 1 a 3 4 5 6 7 

FIG. 7. Solution of (14) with r = 2.5 at t = 120, showing the presence of a second hump. 

D  
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1.0- 

6.5 - 

-8.5 - 

-1.8 - 

-1.5‘, I I I 1 I I r 

9 1 a 3 4 5 6 7 

FIG. 8. Solution of (14) with r = 4.3 at t = 40, showing the presence of a third hump. 
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8 1 2 3 4 5 6 7 

FIG. 9. Solution of (14) with r = 6.4 at I = 3, showing the evolution of the fourth hump. 

a 

1.E 

1.e 

8.5 

0.0 

-8.5 

-1.8 

-1.5 

, 

I- 

‘-\ 

l- , 1  1 I I I , x 

8 1 2 3 4 5 6 7 

FIG. 10. Solution of (14) with r = 6.4 at t = 6, showing the evolution of the fourth hump. 
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a 

1.5 

1.0 

0.5 

8.0 

-8.5 

-1.8 

-1.5 

0 1 2 3 4 5 6 7 

FIG. 11. Solution of (14) with r = 6.4 at I = 9, showing the evolution of the fourth hump. 
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FIG. 12. Solution of (14) with r = 6.4 at I = 12, showing the evolution of the fourth hump. 
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condition evolves to a solution of (11) corresponding to r/2 until about r = 4.2. At 
r = 4.3 the fully developed travelling wave now has period 2rr/3 and corresponds to 
a solution of (11) with r/3. This solution is shown in Fig. 8 and is obtained with 
p = 400, At = 0.001 at t = 40. A finer mesh is required in this case and at higher 
transition regions: Too coarse a mesh may affect which is the controlling harmonic. 

Notice that, as r increases, the growth rate increases and the travelling wave is 
reached sooner. The third harmonic begins to dominate at r = 6.4 with p = 400, 
At = 0.001, t = 15 and the fourth hump appears for a value of r between 8.7 and 8.8 
depending on the mesh. This behaviour apparently continues as r is increased. 

As a final case we present results in Figs. 9 through 12 showing the evolution of 
the “fourth hump” at r = 6.4. These solutions with p = 400, At = 0.001 are at time 
levels t = 3, 6, 9, and 12, and the minimum at t = 12 is - 1.224. The fourth hump 
appears between t = 3 and t = 6. Prior to “settling down” at t = 12, the solutions 
at t = 3 and 6 show a beat-like appearance caused by the competing mode 
interactions. 

5. CONCLUDING REMARKS 

The numerical calculations have given a verification of the formal perturbation 
analysis done by Ganser and Drew and an increased confidence in both approxima- 
tion procedures. With this confirmation in mind, it is possible to make progress 
numerically in the understanding of the mathematical model when the analytic 
techniques become difficult. The numerical discovery of the dominance of the higher 
harmonics for initial conditions with sufficiently long wavelengths (r> 2.5) is an 
example of this. 

The numerical instability introduced by a reduction of the time step posed a 
problem. All of the schemes which we used to solve the equation exhibited this 
behaviour, some more severely than others. A stability analysis of a simplified case, 
together with an understanding of the mathematical model led us to conclude that 
this instability at smaller time steps is acceptable. However, it seems that this 
feature would provide a considerable difficulty for an ODE package which, when 
estimating a large error, would attempt to decrease the time step rather than 
increase it, as might be required to satisfy a stability restriction. 

The finite element method selected for the discretization in space gave fourth- 
order accuracy when product approximation was applied to the nonlinear terms. 
The resulting equations are simpler computationally than those obtained by the 
standard Galerkin scheme. This is an extension of the scheme devised by Sanz- 
Serna and Christie for the KdV equation. 

The experience we have gained here will be directed now towards a greater 
understanding of the original system of equations by means of mathematical and 
numerical techniques. 
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